KEPLER-442b – Egzoplaneta skalista z kategorii superziemi

KEPLER-442bKEPLER-442b - Porównanie do Ziemi egzoplanet z układu KepleraKEPLER-442b

KEPLER-442b – Egzoplaneta skalista z kategorii superziemi

KEPLER-442b – Egzoplaneta skalista z kategorii superziemi, której macierzystą gwiazdą, jest pomarańczowy karzeł.

ESI: 0,84
Wielkość: 1,3 Ziemi
Masa: 2,3 Ziemi
Temperatura równoważna: -65°C

Planeta KEPLER-442b, z której od 1115 lat biegnie do nas światło, należy do tzw. superziemi. W taki sposób określa się egzoplanety skaliste, których masa nie przekracza dziesięciokrotności Ziemi. Jej macierzystą gwiazdą, jest pomarańczowy karzeł (gwiazda większa niż czerwony karzeł, mniejsza jednak od żółtego karła, którym jest słońce). Ten typ gwiazdy miewa spokojniejszą młodość, a zatem nie wysyła ona swoim planetarnym dzieciom zbyt wielkiej ilości promieniowania ultrafioletowego. Ponadto planeta znajduje się w ekosferze, zatem nie da się wykluczyć, iż na jej kamienistej powierzchni pluska się ocean. Jeśli posiada bardziej złożoną atmosferę, nie musi być jednocześnie królestwem zimna. Według niektórych obliczeń to właśnie mniejsze superziemie są najodpowiedniejsze do życia, bardziej nawet niż nasza własna planeta.

Ross-128b – Oddalona od Ziemi o 11 lat świetlnych

Ross 128bRoss 128b

Ross-128b – Oddalona od Ziemi o 11 lat świetlnych

Ross-128b – Układ planetarny wokół czerwonego karła Ross 128 za jakieś 70 000 lat stanie się naszym najbliższym gwiezdnym sąsiadem.

ESI: 0,86
Wielkość: 1,2 Ziemi
Masa: 1,3 Ziemi
Temperatura równoważna: 7°C

Jeszcze bliżej niż GJ 273b znajduje się egzoplaneta Ross-128b. Jest ona od nas oddalona, tak jak jej gwiazda. Którą jest bardzo spokojny czerwony karzeł, o niecałe 11 lat świetlnych i stopniowo się do nas zbliża. Na podstawie uzyskanych danych astronomowie odkryli, że planeta Ross 128b obiega swoją gwiazdę dwadzieścia razy bliżej niż Ziemia obiega słońce. Mimo tak małej odległości planeta dostaje tylko 1,38 razy więcej energii niż nasza planeta. Dzięki chłodnej i stabilnej gwieździe, której temperatura powierzchni w porównaniu ze słońcem mniejsza o połowę, szacuje się temperaturę równoważną na jej powierzchni na wartość od -60°C do 20°C.

TRAPPIST-1d – Jeden z przedstawicieli układu TRAPPIST-1

TRAPPIST-1d - Artystyczna wizja egzoplanetyTRAPPIST-1d - Tablica statystycznaTRAPPIST-1d - Porównanie rozmiarów egzoplanet TRAPPIST-1

TRAPPIST-1d – Jeden z przedstawicieli układu TRAPPIST-1

TRAPPIST-1d – Jeden z przedstawicieli układu TRAPPIST-1

ESI: 0,91
Wielkość: 0,8 Ziemi
Masa: 0,3 Ziemi
Temperatura równoważna: 15°C

Relatywnie mały ciężar tej planety wskazuje, że jej powierzchnia może być zalana przez głęboki ocean.
Według niektórych spekulacji jest tutaj 250-krotnie więcej wody niż w ziemskich oceanach.
Pierwsze pomiary wykazały jeszcze, że planeta porusza się poza strefą życia, ale teraz wydaje się, że bezpiecznie do niej wejdzie. Egzoplaneta może się szczycić gęstą atmosferą i jest tak blisko swojej gwiazdy, że obiega ją w cztery dni. Pada na nią jedynie o 4,3 % więcej światła niż na Ziemię. Chociaż TRAPPIST-1d obiega swoją gwiazdę w obrocie synchronicznym, gęsta atmosfera, w której powinno być dużo pary wodnej, pomaga w wymianie cieplnej. Różnica między oświetloną, a ciemną półkulą nie jest taka jak w przypadku innych ciał niebieskich.

TRAPPIST-1e – Egzoplaneta układu TRAPPIST-1

TRAPPIST-1eTRAPPIST-1e - Orbity planet układu TRAPPIST-1

TRAPPIST-1e

TRAPPIST-1e – Egzoplaneta układu TRAPPIST-1

TRAPPIST-1e – Kamienista egzoplaneta układu TRAPPIST-1, według własności fizycznych to właśnie „e” z systemu planetarnego TRAPPIST jest najbardziej podobne do Ziemi.

ESI: 0,85
Wielkość: 0,9 Ziemi
Masa: 0,8 Ziemi
Temperatura równoważna: -22°C

Porusza się ona pośrodku ekosystemu całego tego zbioru, jednak jest tutaj najmniej wody. TRAPPIST-1e ma mniejszy rozmiar od Ziemi, ma jednak większą masę. Ewentualni mieszkańcy musieliby być mniejszego wzrostu oraz większej wagi, by poradzić sobie z naporem lokalnej grawitacji. Czerwone karły, do których należy gwiazda TRAPPIST-1, nie emitują tyle światła i ciepła co chociażby Słońce. Oznacza to, że ekosfera, w której w odpowiednich warunkach może utrzymać się woda w stanie ciekłym, znajduje się w znacznie bliższych orbitach niż w naszym układzie słonecznym. Rok na planecie TRAPPIST-1e trwa sześć zwykłych ziemskich dni.
Planeta prawdopodobnie ma również kompaktową atmosferę, w której brakuje wodoru. Ten typ atmosfery można znaleźć również na planetach skalistych naszego układu słonecznego. Wodór jest ponadto gazem cieplarnianym, gdyby była go w tutejszej atmosferze wielka ilość, powierzchnia planety nie nadawałaby się do zamieszkania.

TRAPPIST-1f – Kamienista egzoplaneta wielkości Ziemi

TRAPPIST-1f - Artystyczna wizja egzoplanetyTRAPPIST-1f - Porównanie danych kamienistych planet układu TRAPPIST-1, z planetami układu słonecznegoTRAPPIST-1f - Układ planetarny wokół czerwonego karła TRAPPIST-1

TRAPPIST-1f – Kamienista egzoplaneta wielkości Ziemi

TRAPPIST-1f – Kamienista egzoplaneta, systemu planetarnego wokół czerwonego karła TRAPPIST-1.

ESI: 0,68
Wielkość: 1,1 Ziemi
Masa: 0,9 Ziemi
Temperatura równoważna: -65°C

Wokół gwiazdy oddalonej od nas o 40 lat świetlnych krąży siedem kamienistych planet. Szósta z kolei ma bardzo podobne rozmiary do Ziemi, jednak jej gęstość jest zasadniczo mniejsza. Składem jest bliska lodowym lub wodnym światom księżyca Jowisza – Europy czy też księżyca Saturna – Enceladusa. Pierwsze pomiary wyznaczyły, iż niemałą część masy planety stanowi lód, a pod powierzchnią być może i woda w stanie ciekłym. Atmosfera tutaj nie jest najgęstsza, zatem temperatura równoważna prawdopodobnie nie różni się od tej właściwej.

ALMA – Atacama Large Millimeter Array

ALMA - Widok z góryALMA - Atacama Large Millimeter ArrayALMA - Atacama Large Millimeter ArrayALMA - Atacama Large Millimeter ArrayALMA - Atacama Large Millimeter ArrayALMA - Wybuch gwiazdy w konstelacji OrionaALMA - Olbrzymia plama na SłońcuALMA - Atacama Large Millimeter Array

ALMA – Atacama Large Millimeter Array

ALMA – Atacama Large Millimeter Array – 5000 metrów n.p.m. na pustyni Atakama w Chile. Czyli w jednym z najbardziej suchych miejsc naszego globu. Również jednym z najmniej przyjaznych miejsc na naszej planecie. Zwłaszcza płaskowyż Chajnantor. Tutaj, w północnym Chile, temperatura może spaść z 20 stopni Celsjusza w dzień do -20 w nocy. Silny wiatr szaleje po nieurodzajnym, lśniącym na czerwono płaskowyżu, smagając ostre granie skał i nieliczne krzaki, którym udaje się tu przeżyć. Powietrze zawiera o połowę mniej tlenu niż na poziomie morza. Wilgotność powietrza jest niemal zerowa, co sprawia, iż atmosfera jest bardziej przezroczysta. To, co przenika z kosmosu, dociera na płaskowyż niemal nieprzefiltrowane. Dzięki temu pustynia Atakama jest mekką astronomów.

Powstał na niej największy radioteleskop świata. Za pomocą Atacama Large Millimeter Array, przyrządu o rewolucyjnej konstrukcji. Naukowcy mogą po raz pierwszy dotrzeć do ekstremalnie zimnych i ciemnych obszarów we wszechświecie. Dzięki tej sieci radioteleskopów specjaliści są nawet w stanie przedrzeć się przez nieprzeniknione dotychczas mgławice. W ten sposób odkryć gwiazdy, które powstały wkrótce po Wielkim Wybuchu.

Sześdziesiąt sześć anten ALMA montowano w bazie na wysokości 3000 metrów i samochodami ciężarowymi przetransportowano na płaskowyż. Tam zostały ustawione z milimetrową precyzją. Po ich uruchomieniu i połączeniu, powstał odbiornik o powierzchni ok. 16 km².

Antarktyczna temperatura ulega zmianie

Antarktyczna temperatura ulega zmianie

Antarktyczna temperatura ulega zmianie

Antarktyczna temperatura ulega zmianie – Naukowcy z University of Washington w Seattle (USA) po analizie danych z satelity, obserwującego Antarktykę. Doszli do wniosku, że Antarktyka ogrzała się o 0,5°C pomiędzy 1957 r. a 2006 r. Uczeni zauważyli, że temperatura szybciej rośnie na zachodniej Antarktydzie. Ogrzewanie się kontynentu ma wpływ na podnoszenie się poziomu mórz i oceanów.

Daniel Gabriel Fahrenheit – Wynalazca termometru

Daniel Gabriel Fahrenheit – Wynalazca termometru

Daniel Gabriel Fahrenheit – Wynalazca termometru

Daniel Gabriel Fahrenheit – Wynalazca termometru – 24.05.1686 r. Urodził się fizyk i wynalazca, Daniel G. Fahrenheit. Wynalazł termometr rtęciowy i opracował skalę temperatur, zwaną jego nazwiskiem. Wytwarzał termometry, barometry i wysokościomierze. Opisał zjawisko przechłodzenia wody i stwierdził zależność wrzenia wody od ciśnienia.

Najchłodniejsze miejsce układu słonecznego

Najchłodniejsze miejsce układu słonecznego - Tycho Central PeakNajchłodniejsze miejsce układu słonecznego - Sonda Lunar Reconnaissance Orbiter

Najchłodniejsze miejsce układu słonecznego

Najchłodniejsze miejsce układu słonecznego – Amerykańska sonda kosmiczna Lunar Reconnaissance Orbiter (LRO), blisko bieguna Księżyca, na południowo-zachodnim krańcu krateru Hermite odkryła najzimniejsze miejsce Układu Słonecznego. Temperatura wynosiła -249 °C, a zatem brakowało 24 °C do punktu absolutnego zera. Substancja schłodzona do -273,15 °C lub do zera absolutnego, nie ma energii cieplnej. Jest to miejsce, które nie ucieka przed bezpośrednim światłem słonecznym.

Najgłębszy odwiert Ziemi – Naukowcy byli zaskoczeni

Najgłębszy odwiert ZiemiNajgłębszy odwiert Ziemi

Najgłębszy odwiert Ziemi – Naukowcy byli zaskoczeni

Najgłębszy odwiert Ziemi – Naukowcy byli zaskoczeni – Za najgłębszy zrealizowany do tej pory odwiert na Ziemi, eksperci uważają dziurę wykonaną na rosyjskim półwyspie Kolskim. Naukowcy rozpoczęli pracę w 1970 r. A już w 1984 r. udało im się dokopać w głąb do 12 068 m. Planowano przejść przez twardą skałę na głębokość 13,5 – 15 km, ale nie sprawdzono narzędzi do wiercenia diamentów. Dlatego są one wymienione na specjalnie zaprojektowane ceramiczne ostrza. Naukowcy byli zaskoczeni m.in. licznymi źródłami termalnymi wypływającymi z popękanych skał krystalicznych, na których zakładano, że będą suche. Podczas usuwania próbek skalnych rozrywał się pod ciśnieniem, kruszył materiał skalny, a czasami eksplodował. Temperatura wody na dnie odwiertu wynosiła 220 °C, ciśnienie – 1,400 atmosfer.