KEPLER-442b – Egzoplaneta skalista z kategorii superziemi

KEPLER-442bKEPLER-442b - Porównanie do Ziemi egzoplanet z układu KepleraKEPLER-442b

KEPLER-442b – Egzoplaneta skalista z kategorii superziemi

KEPLER-442b – Egzoplaneta skalista z kategorii superziemi, której macierzystą gwiazdą, jest pomarańczowy karzeł.

ESI: 0,84
Wielkość: 1,3 Ziemi
Masa: 2,3 Ziemi
Temperatura równoważna: -65°C

Planeta KEPLER-442b, z której od 1115 lat biegnie do nas światło, należy do tzw. superziemi. W taki sposób określa się egzoplanety skaliste, których masa nie przekracza dziesięciokrotności Ziemi. Jej macierzystą gwiazdą, jest pomarańczowy karzeł (gwiazda większa niż czerwony karzeł, mniejsza jednak od żółtego karła, którym jest słońce). Ten typ gwiazdy miewa spokojniejszą młodość, a zatem nie wysyła ona swoim planetarnym dzieciom zbyt wielkiej ilości promieniowania ultrafioletowego. Ponadto planeta znajduje się w ekosferze, zatem nie da się wykluczyć, iż na jej kamienistej powierzchni pluska się ocean. Jeśli posiada bardziej złożoną atmosferę, nie musi być jednocześnie królestwem zimna. Według niektórych obliczeń to właśnie mniejsze superziemie są najodpowiedniejsze do życia, bardziej nawet niż nasza własna planeta.

Ross-128b – Oddalona od Ziemi o 11 lat świetlnych

Ross 128bRoss 128b

Ross-128b – Oddalona od Ziemi o 11 lat świetlnych

Ross-128b – Układ planetarny wokół czerwonego karła Ross 128 za jakieś 70 000 lat stanie się naszym najbliższym gwiezdnym sąsiadem.

ESI: 0,86
Wielkość: 1,2 Ziemi
Masa: 1,3 Ziemi
Temperatura równoważna: 7°C

Jeszcze bliżej niż GJ 273b znajduje się egzoplaneta Ross-128b. Jest ona od nas oddalona, tak jak jej gwiazda. Którą jest bardzo spokojny czerwony karzeł, o niecałe 11 lat świetlnych i stopniowo się do nas zbliża. Na podstawie uzyskanych danych astronomowie odkryli, że planeta Ross 128b obiega swoją gwiazdę dwadzieścia razy bliżej niż Ziemia obiega słońce. Mimo tak małej odległości planeta dostaje tylko 1,38 razy więcej energii niż nasza planeta. Dzięki chłodnej i stabilnej gwieździe, której temperatura powierzchni w porównaniu ze słońcem mniejsza o połowę, szacuje się temperaturę równoważną na jej powierzchni na wartość od -60°C do 20°C.

TRAPPIST-1d – Jeden z przedstawicieli układu TRAPPIST-1

TRAPPIST-1d - Artystyczna wizja egzoplanetyTRAPPIST-1d - Tablica statystycznaTRAPPIST-1d - Porównanie rozmiarów egzoplanet TRAPPIST-1

TRAPPIST-1d – Jeden z przedstawicieli układu TRAPPIST-1

TRAPPIST-1d – Jeden z przedstawicieli układu TRAPPIST-1

ESI: 0,91
Wielkość: 0,8 Ziemi
Masa: 0,3 Ziemi
Temperatura równoważna: 15°C

Relatywnie mały ciężar tej planety wskazuje, że jej powierzchnia może być zalana przez głęboki ocean.
Według niektórych spekulacji jest tutaj 250-krotnie więcej wody niż w ziemskich oceanach.
Pierwsze pomiary wykazały jeszcze, że planeta porusza się poza strefą życia, ale teraz wydaje się, że bezpiecznie do niej wejdzie. Egzoplaneta może się szczycić gęstą atmosferą i jest tak blisko swojej gwiazdy, że obiega ją w cztery dni. Pada na nią jedynie o 4,3 % więcej światła niż na Ziemię. Chociaż TRAPPIST-1d obiega swoją gwiazdę w obrocie synchronicznym, gęsta atmosfera, w której powinno być dużo pary wodnej, pomaga w wymianie cieplnej. Różnica między oświetloną, a ciemną półkulą nie jest taka jak w przypadku innych ciał niebieskich.

TRAPPIST-1e – Egzoplaneta układu TRAPPIST-1

TRAPPIST-1eTRAPPIST-1e - Orbity planet układu TRAPPIST-1

TRAPPIST-1e

TRAPPIST-1e – Egzoplaneta układu TRAPPIST-1

TRAPPIST-1e – Kamienista egzoplaneta układu TRAPPIST-1, według własności fizycznych to właśnie „e” z systemu planetarnego TRAPPIST jest najbardziej podobne do Ziemi.

ESI: 0,85
Wielkość: 0,9 Ziemi
Masa: 0,8 Ziemi
Temperatura równoważna: -22°C

Porusza się ona pośrodku ekosystemu całego tego zbioru, jednak jest tutaj najmniej wody. TRAPPIST-1e ma mniejszy rozmiar od Ziemi, ma jednak większą masę. Ewentualni mieszkańcy musieliby być mniejszego wzrostu oraz większej wagi, by poradzić sobie z naporem lokalnej grawitacji. Czerwone karły, do których należy gwiazda TRAPPIST-1, nie emitują tyle światła i ciepła co chociażby Słońce. Oznacza to, że ekosfera, w której w odpowiednich warunkach może utrzymać się woda w stanie ciekłym, znajduje się w znacznie bliższych orbitach niż w naszym układzie słonecznym. Rok na planecie TRAPPIST-1e trwa sześć zwykłych ziemskich dni.
Planeta prawdopodobnie ma również kompaktową atmosferę, w której brakuje wodoru. Ten typ atmosfery można znaleźć również na planetach skalistych naszego układu słonecznego. Wodór jest ponadto gazem cieplarnianym, gdyby była go w tutejszej atmosferze wielka ilość, powierzchnia planety nie nadawałaby się do zamieszkania.

CME – Koronalne wyrzucanie masy – Erupcje na Słońcu

Koronalne wyrzucanie masy wybucha w Słońcu 31, sierpnia, 2012 r.CME - Koronalne wyrzucanie masy - Erupcje na Słońcu 31, sierpnia, 2012 r.CME - Słońce w promieniowaniu X

CME – Koronalne wyrzucanie masy – Erupcje na Słońcu

CME – Koronalne wyrzucanie masy – W każdej sekundzie Słońce emituje ok. dwóch milionów ton materii w postaci cząstek – a przynajmniej tak jest zazwyczaj. W atmosferze czasami dochodzi jednak do ogromnych erupcji z korony słonecznej (ang. Coronal Mass Eruptions, CME). Huragany tego typu są zaliczane do najbardziej spektakularnych zjawisk w naszej części wszechświata. W ich trakcie Słońce traci o wiele więcej masy niż zwykle, a prędkość wiatrów osiąga nawet 10 mln/h. CME to obłoki gazu zbudowanego z cząstek obdarzonych ładunkiem elektrycznym (fizycy nazywają taki gaz plazmą). Plazmowe huragany mogą sięgać Ziemi i wywoływać tzw. burze geomagnetyczne, które oddziałują na urządzenia elektroniczne, powodując zwarcia oraz uszkodzenia sprzętu.

Nie sposób przewidzieć, jak bardzo niebezpieczne może okazać się to dla satelitów, internetu oraz sterowanych komputerowo obiektów, np. elektrowni atomowych. Ostatnia naprawdę silna burza słoneczna miała miejsce jeszcze w epoce telegrafów, czyli na długo przed pojawieniem się pecetów. Choć astronomowie cały czas uważnie obserwują zachowanie Słońca, mogą przewidzieć jej nadejście tylko z niewielkim wyprzedzeniem. Oznacza to, iż w przyszłości będziemy mieć co najmniej 24 godziny, by wyłączyć wszystkie newralgiczne systemy (choćby te w elektrowniach jądrowych) oraz zabezpieczyć komputery. Ale burze geomagnetyczne nie są jedynym problemem, przed którym stawia nas najważniejsza gwiazda…

Meteorologiczna analiza tygodnia

Meteorologiczna analiza tygodnia - Meteorologiczne Obserwatorium Lindenberg

Meteorologiczna analiza tygodnia

Meteorologiczna analiza tygodnia – Po przeanalizowaniu danych meteorologicznych z lat 1991 – 2005 r. Niemieccy naukowcy odkryli, że najgorętszym dniem tygodnia jest środa, a najbardziej suchym – poniedziałek. Jednak w weekend zazwyczaj pada. W ciągu tygodnia smog zasłania słońce, a gazy spalinowe biorą udział w tworzeniu się chmur. W sobotę zjawisko to ma kluczowe znaczenie.

Przewidziane zaćmienie słońca – Przez Talesa z Miletu

Przewidziane zaćmienie słońca – Przez Talesa z Miletu

Przewidziane zaćmienie słońca – Przez Talesa z Miletu

Przewidziane zaćmienie słońca – Przez Talesa z Miletu – 28.05.585 r.p.n.e. miało miejsce pierwsze przewidziane zaćmienie Słońca. Obliczeń dokonał Tales z Miletu, grecki filozof, matematyk i astronom. Twórca podstaw nauki i filozofii europejskiej. Stworzył pierwszą racjonalną teorię natury.

Mikołaj Kopernik – Heliocentryczna wizja wszechświata

Mikołaj Kopernik – Heliocentryczna wizja wszechświata

Mikołaj Kopernik – Heliocentryczna wizja wszechświata

Mikołaj Kopernik – Heliocentryczna wizja wszechświata – 24.05.1543 r. zmarł Mikołaj Kopernik (ur. 1473 r.), astronom, matematyk, prawnik i ekonomista. Odkrył zmienność mimośrodu Ziemi i ruch apogeum słonecznego względem gwiazd stałych. W swoim dziele „O obrotach sfer niebieskich” opisał heliocentryczną wizję Wszechświata. Opublikował traktat monetarny.

Wiatr słoneczny – Słońce ma wpływ na procesy

Wiatr słoneczny

Wiatr słoneczny – Słońce ma wpływ na procesy

Wiatr słoneczny – Słońce ma wpływ na procesy zachodzące w Układzie Słonecznym na wiele różnych sposobów. Chociaż grawitacja jest utrzymywana dzięki jego systemowi czasu, emituje przestrzeń w szerokim zakresie typów molekularnych promieniowania, do których cecha „wiatr Słońca”. Naukowcy z Uniwersytetu w Leicester połączyli dane. Uzyskane podczas obserwacji aktywności słonecznej z danych uzyskanych podczas obserwacji marsjańskiej atmosfery, dostarczonych przez satelity. Z korony słonecznej znika ze środowiska aż do 2,5 razy więcej cząstek. Obserwacje przeprowadzono podczas spadku aktywności słonecznej w 11-letnim cyklu słonecznym.